Activity-dependent regulation of [Ca2+]i in avian cochlear nucleus neurons: roles of protein kinases A and C and relation to cell death.
نویسندگان
چکیده
Neurons of the cochlear nucleus, nucleus magnocellularis (NM), of young chicks require excitatory afferent input from the eighth nerve for maintenance and survival. One of the earliest changes seen in NM neurons after deafferentation is an increase in intracellular calcium concentration ([Ca2+]i). This increase in [Ca2+]i is due to loss of activation of metabotropic glutamate receptors (mGluR) that activate second-messenger cascades involved in [Ca2+]i regulation. Because mGluRs are known to act via the phospholipase C and adenylate cyclase signal transduction pathways, the goal of this study was to determine the roles of protein kinases A (PKA) and C (PKC) activities in the regulation of NM neuron [Ca2+]i by eighth nerve stimulation. Additionally, we sought to determine the relationship between increased [Ca2+]i and cell death as measured by propidium iodide incorporation. [Ca2+]i of individual NM neurons in brain stem slices was monitored using fura-2 ratiometric fluorescence imaging. NM field potentials were monitored in experiments in which the eighth nerve was stimulated. Five hertz orthodromic stimulation maintained NM neuron [Ca2+]i at approximately 110 nM for 180 min. In the absence of stimulation, NM neuron [Ca2+]i increased steadily to a mean of 265 nM by 120 min. This increase was attenuated by superfusion of PKC activators phorbol-12,13-myristate acetate (100 nM) or dioctanoylglycerol (50 microM) and by activators of PKA: 1 mM 8-bromoadenosine-3',5'-cyclophosphate sodium (8-Br-cAMP), 50 microM forskolin or 100 microM Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine. Inhibition of PKA (100 microM Rp-cAMPS) or PKC (50 nM bisindolymaleimide or 10 microM U73122) during continuous orthodromic stimulation resulted in an increase in NM neuron [Ca2+]i that exceeded 170 and 180 nM, respectively, by 120 min. Nonspecific kinase inhibition with 1 microM staurosporine during stimulation resulted in an [Ca2+]i increase that was greater in magnitude than that seen with either PKA or PKC inhibition alone, equal to that seen in the absence of stimulation, but much smaller than that seen with inhibition of mGluRs. In addition, manipulations that resulted in a [Ca2+]i increase >/=250 nM resulted in an increase in number and percentage of propidium iodide-labeled NM neurons. These results suggest that eighth nerve activity maintains [Ca2+]i of NM neurons at physiological levels in part via mGluR-mediated activation of PKA and PKC and that increases in [Ca2+]i due to activity deprivation or interruption of the PKA and PKC [Ca2+]i regulatory mechanisms are predictive of subsequent cell death.
منابع مشابه
Activity-Dependent Regulation of [Ca]i in Avian Cochlear Nucleus Neurons: Roles of Protein Kinases A and C and Relation to Cell Death
[PDF] [Full Text] [Abstract] , April, 1 2003; 144 (4): 1486-1495. Endocrinology Shirley Campbell, Melissa Otis, Mylene Cote, Nicole Gallo-Payet and Marcel Daniel Payet Calcium for Arg-Gly-Asp Peptide in the Activation of the p42/p44mapk Pathway and Intracellular Connection between Integrins and Cell Activation in Rat Adrenal Glomerulosa Cells: A Role [PDF] [Full Text] [Abstract] , October, ...
متن کاملP146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملP20: The Role of Protein Kinases in Memory
When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...
متن کاملGlutamate regulates IP3-type and CICR stores in the avian cochlear nucleus.
Neurons of the avian cochlear nucleus, nucleus magnocellularis (NM), are activated by glutamate released from auditory nerve terminals. If this stimulation is removed, the intracellular calcium ion concentration ([Ca2+]i) of NM neurons rises and rapid atrophic changes ensue. We have been investigating mechanisms that regulate [Ca2+]i in these neurons based on the hypothesis that loss of Ca2+ ho...
متن کاملEighth nerve activity regulates intracellular calcium concentration of avian cochlear nucleus neurons via a metabotropic glutamate receptor.
1. Neurons in the cochlear nucleus, nucleus magnocellularis (NM), of embryonic and neonatal chicks are dependent on eighth nerve activity for their maintenance and survival. Removing this input results in the death of 20-40% of the NM neurons and profound changes in the morphology and metabolism of surviving neurons. 2. One of the first changes in NM neurons after an in vivo cochlea removal is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 5 شماره
صفحات -
تاریخ انتشار 1998